Exercise 43

In Exercises 41-58, find any intercepts and test for symmetry. Then sketch the graph of the equation.

$$
y=9-x^{2}
$$

Solution

To find the y-intercept, plug $x=0$ into the function.

$$
y=9-(0)^{2}=9
$$

Therefore, the y-intercept is $(0,9)$. To find the x-intercept(s), set $y=0$ and solve the equation for x.

$$
\begin{gathered}
9-x^{2}=0 \\
x^{2}=9 \\
x=\{-3,3\}
\end{gathered}
$$

Therefore, the x-intercepts are $(-3,0)$ and $(3,0)$. Replacing x with $-x$ does not change the equation, so there is symmetry with respect to the y-axis.

$$
y=9-(-x)^{2}=9-x^{2}
$$

Replacing y with $-y$ changes the equation, so there's no symmetry with respect to the x-axis.

$$
-y=9-x^{2} \quad \rightarrow \quad y=-9+x^{2}
$$

Replacing x with $-x$ and y with $-y$ changes the equation, so there's no symmetry with respect to the origin.

$$
-y=9-(-x)^{2}=9-x^{2} \quad \rightarrow \quad y=-9+x^{2}
$$

A graph of the function versus x is shown below.

